HOMEWORK 1

Due date: Monday of Week 2 Exercises: 1, 2, 5, 9, 10, page 213 Exercises: 3, 5, pages 218-219 Exercises: 2, 5, 6, 13, 14, 15.

In the following F is a general field. If it is necessary, you can assume that the characteristic of F is zero.

This's a problem from last final exam. Do it again on your own.

Problem 1. Consider the following two matrices in $Mat_{3\times3}(\mathbb{R})$

$$
A = \begin{bmatrix} 5 & 4 & 3 \\ -3 & -2 & -3 \\ 0 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 2 \\ -3 & -6 & -3 \\ 2 & 2 & -1 \end{bmatrix}.
$$

Determine whethere A, B can be simultaneously diagonalizable. If so, find a matrix P such that both $P^{-1}AP$ and $P^{-1}BP$ are diagonal matrices.

Problem 2. Given a matrix $A \in Mat_{n\times n}(F)$. Suppose that $I-A$ is invertible, where $I \in Mat_{n\times n}(F)$ is the identity matrix. Show that $(I - A)^{-1}$ is a polynomial of A, i.e., there exists a polynomial $f \in F[x]$ such that $(I - A)^{-1} = f(A)$.

Hint: If A is nilpotent, it should be easy to find such f . For the general A , consider the characteristic polynomial $\chi_A(x) = \det(xI - A)$. The assumption shows that $\chi_A(1) \neq 0$. Consider the long division $\chi_A(x) = (x-1)p + r$ and use Cayley-Hamilton. You can use this problem to do Exercise 9 of page 213. It is easy if you could guess its answer. But this problem will tell you how to guess the answer. See also Exercise 5, page 213.

Let V be a finite dimensional vector space over a field F and let $T \in \text{End}_F(V)$. Let W be a T-invariant subspace of V with $W \neq 0, W \neq V$. We can consider the following question. Is there always a T-invariant subspace W' of V such that $V = W \oplus W'$. The following is an example.

Problem 3. Let V be a vector space over F with $\dim_F V = 2$. Let $\mathcal{B} = \text{Span} \{ \alpha_1, \alpha_2 \}$ be a basis of V. Consider

 $T: V \to V$

defined by $T(\alpha_1) = \alpha_1, T(\alpha_2) = \alpha_1 + \alpha_2$ for some $a \in F$. Let $W = \text{Span} \{ \alpha_1 \}$. Then W is T invariant. Determine whether there exists a $W' \subset V$ such that W' is T-invariant and $V = W \oplus W'$.

This problem is similar to Exercise 2, page 218. We will go back to this problem in Section 7.5.

Problem 4. Let $\rho : \mathbb{C}^{\times} \to \text{GL}_2(\mathbb{C})$ be a map such that $\rho(z_1z_2) = \rho(z_1)\rho(z_2), \forall z_1, z_2 \in \mathbb{C}^{\times}$.

- (1) Construct such a ρ such that $\rho(z)$ is not diagonalizable for any $|z| \neq 1$;
- (2) Suppose that there is an element z_0 such that $\rho(z_0)$ has two distinct eigenvalues. Show that there exists a matrix $P \in GL_2(\mathbb{C})$ such that

$$
P^{-1}\rho(z)P
$$

is diagonal for any $z \in \mathbb{C}^{\times}$.

Hint for (1): think about what kind matrices in $GL_2(\mathbb{C})$ are not diagonalizable.

Problem 5. Consider the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ with p-elements for a prime p. Consider $\mathbb{F}_p^{\times} =$ $\{x \in \mathbb{F}_p : x \neq 0\}$. It is known that for any element $x \in \mathbb{F}_p^{\times}$, we have $x^{p-1} = 1$. This is called Fermat's little theorem. We will show this later (or you can try to prove this on your own). Let $\rho: \mathbb{F}_p^{\times} \to \mathrm{GL}_n(\mathbb{C})$ be a map such that $\rho(x_1x_2) = \rho(x_1)\rho(x_2)$ for any $x_1, x_2 \in \mathbb{F}_p^{\times}$.

- (1) Show that $\rho(1) = I_n$.
- (2) Show that there exists an element $P \in GL_n(\mathbb{C})$ such that $P \rho(x) P^{-1}$ is diagonal for any $x \in \mathbb{F}_p^{\times}$.

Problem 6. Let $W_i, 1 \leq i \leq k$ be subspaces of V. Let $\iota_i : W_i \to W$ be the linear map defined by $\iota_i(\alpha_i) = \alpha_i$. This makes sense because W_i is a subspace of V.

(1) Suppose

$$
V = W_1 \oplus W_2 \oplus \cdots \oplus W_k.
$$

Given any vector space X and any linear map $f_i: W_i \to X$, show that there is a unique linear map $f: V \to X$ such that $f_i = f \circ \iota_i$ for each i with $1 \leq i \leq k$. In other words, there exists a commutative diagram

(2) Given any vector space X and any linear map $f_i: W_i \to X$, suppose there is a unique linear map $f: V \to X$ such that $f_i = f \circ \iota_i$ for each i with $1 \leq i \leq k$. In other words, there exists a commutative diagram

show that

$$
V = W_1 \oplus W_2 \oplus \cdots \oplus W_k.
$$

Given a vector space V and two subspaces W_1, W_2 such that $V = W_1 \oplus W_2$. Let $E_i : V \to W_i \subset V$ be the corresponding projection. Now the question is: how to write E_i explicitly using matrix. Consider the following example.

Problem 7. Let $V = F^3$. The elements of V are viewed as column vectors. Let $\epsilon_i = (0, \ldots, 0, 1, 0, \ldots, 0)^t$, and let $\mathcal{B} = [\epsilon_1, \epsilon_2, \epsilon_3]$ be the standard basis of V. Let $\alpha_1 = \epsilon_1, \alpha_2 = \epsilon_2$ and $\alpha_3 = 19\epsilon_1 + 5\epsilon_2 + \epsilon_3$. Let $W_1 = \text{Span} \{\alpha_1, \alpha_2\}, W_2 = \text{Span} \{\alpha_3\}.$ Then it is easy to see that $V = W_1 \oplus W_2$. Let E_i be the corresponding projection. Compute the matrices

 $[E_i]_\mathcal{B}$

for $i = 1, 2$.

Suppose that F is a field of characteristic zero. The next problem is similar to Exercise 2, page 225.

Problem 8. Consider the matrix

$$
A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{bmatrix}.
$$

- (1) Show that A is not diagonalizable.
- (2) Find the Jordan decomposition of A, namely, find a diagonalizable matrix D and a nilpotent matrix N such that $A = D + N$ and $DN = ND$.

HOMEWORK 1 3

You don't have to submit solutions of the rest problems. But it is worth to think about them. These problems should be with you when you read the book. But I don't have time to address these questions in classes. Again, try to ask yourself reasonable questions when you read math books. These problems are related to Exercise 4, page 225. Given a $T \in \text{End}_F(V)$.

Problem 9. In the primary decomposition theorem, if $\mu_T = p_1^{r_1} \dots p_k^{r_k}$, we have

$$
V = W_1 \oplus \cdots \oplus W_k,
$$

with $W_i = \ker(p_i(T)^{r_i})$. What can you say about dim W_i ? Show that $W_i \neq 0$ at least.

Problem 10. Let $f \in I(T) = \{g \in F[x] : g(T) = 0\}$ be a nonzero polynomial and let

$$
f=p_1^{s_1}\ldots p_t^{s_t}
$$

be the prime decomposition of f with distinct irreducible polynomials p_1, \ldots, p_k and $s_i \geq 0$. Let $W_i' = \ker(p_i(T)^{s_i})$. Show that

- (1) $V = W'_1 \oplus W'_2 \oplus \cdots \oplus W'_t;$
- (2) each W_i' is T-invariant.
- (3) If $p_j \nmid \mu_T$, show that $W'_j = \{0\}.$
- (4) If $p_i | \mu_T$ and $p_i | f$, show that $W_i = W'_i$, namely, $\ker(p_i(T)^{r_i}) = \ker(p_i(T)^{s_i})$.

(5) From the last two parts, apparently, we cannot expect $p_i^{s_i}$ is the minimal polynomial of $T|_{W_i'}$.

Problem 11. Do we know that μ_T and χ_T have exactly the same prime factors? Is it possible that there exists a prime polynomial such that $p|\chi_T$ but $p \nmid \mu_T$?

The answer is no. See section 7.2. But it is a good exercise to think about this by yourself. We proved that μ_T and χ_T have the same roots. But it is possible that over a field, a prime factor p does not have any root. So if there exists a prime factor $p|\chi_T$ but $p \nmid \mu_T$, it does not contradict to what we know so far. But why cannot this happen?

Now suppose that

$$
\chi_T = p_1^{d_1} \dots p_k^{d_k}.
$$

Now let $W_i' = \ker(p_i(T)^{d_i})$ for $1 \leq i \leq k$. The above problems show that $W_i' = W_i$ and the primary decomposition obtained using χ_T and the primary decomposition obtained using $f = \mu_T$ are exactly the same.

Now think about the following question:

Problem 12. Why do we use μ_T rather than χ_T in the statement of the primary decomposition theorem even it gives the same decomposition when we replace μ_T by χ_T ?

To help you to understand the above decompositions, try to work out the following example.

Problem 13. Let $V = F^4$ and $T: V \to V$ is represented by

$$
A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

We have $\mu_T = x^2(x-1)$ and $\chi_T = x^2(x-1)^2$. Also consider the polynomial $g = x^2(x-1)(x^2+1) \in$ $I(T)$. Compute $W_1 = \ker(T^2), W_2 = \ker(T-1)$; and $W_1' = \ker(T^2)$ and $W_2' = \ker(T-1)^2$; and $\ker(T^2+I)$. Here we assume that the characteristic of F is not 2.